(5x^2+32)+(7x^2)=180

Simple and best practice solution for (5x^2+32)+(7x^2)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5x^2+32)+(7x^2)=180 equation:



(5x^2+32)+(7x^2)=180
We move all terms to the left:
(5x^2+32)+(7x^2)-(180)=0
determiningTheFunctionDomain 7x^2+(5x^2+32)-180=0
We get rid of parentheses
7x^2+5x^2+32-180=0
We add all the numbers together, and all the variables
12x^2-148=0
a = 12; b = 0; c = -148;
Δ = b2-4ac
Δ = 02-4·12·(-148)
Δ = 7104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7104}=\sqrt{64*111}=\sqrt{64}*\sqrt{111}=8\sqrt{111}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{111}}{2*12}=\frac{0-8\sqrt{111}}{24} =-\frac{8\sqrt{111}}{24} =-\frac{\sqrt{111}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{111}}{2*12}=\frac{0+8\sqrt{111}}{24} =\frac{8\sqrt{111}}{24} =\frac{\sqrt{111}}{3} $

See similar equations:

| z=147+226 | | u=308-246 | | 9+x=7x+21 | | b+60=93 | | 3a+a=110 | | x+38=x+68+90 | | 2(5x-3)=-36 | | 48-1=r | | Y=6/12x | | 9^x-2.3x=3 | | 25t+5=25t+7 | | k=27+37 | | 5³-10²=x(8-2)+2x-3x | | 4+2x=x+16 | | x+38+x+68+90=180 | | u-14=18 | | 45x=15x+120 | | 8w=-4w | | b+33=80 | | r-61=36 | | x+3/4=-9 | | 8d–4d+2d+9=6d | | 4x+6+3x+17+80=180 | | f=56-23 | | d-60=7 | | -28=-4/5u | | 101=4x-9+7x | | 25x+20x+135=180 | | 99-59=g | | 20=2-a. | | 3.29x=5.5√x+10000 | | z-35=36 |

Equations solver categories